
Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 1

Using Java 5.0 BigDecimal
Mike Cowlishaw
IBM Fellow

http://www2.hursley.ibm.com/decimal

http://www2.hursley.ibm.com/decimal

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 2

Overview
Background

Why decimal arithmetic is important
New standards for decimal formats,
arithmetic, and hardware

Java 5.0 BigDecimal (what’s new, what’s fast?)

Questions?

Copyright © IBM Corporation 2004. All rights reserved.

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 3

Origins of Decimal Arithmetic
Decimal (base 10) arithmetic has been
used for thousands of years

Algorism (Indo-Arabic
place value system)
in use since 800 AD

Mechanical calculators
were decimal

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 4

Early Computers
Often derived from mechanical decimal
calculator designs

Often decimal (even addresses)

But binary was shown to be more efficient
minimal storage space
more reliable (20% fewer components)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 5

Today’s Computer Arithmetic

ALU FPU

Integer
arithmetic

Floating-point
arithmetic
(IEEE 754)

byte, short, int,
long, etc.

single, float,
double, quad, etc.

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 6

Today’s Computer Arithmetic

ALU FPU

12 x 12 → 144 1.2 x 1.2 → 1.44

byte, short, int,
long, etc.

single, float,
double, quad, etc.

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 7

1.2 x 1.2 = 1.44 ?
Binary fractions cannot exactly represent
most decimal fractions (e.g., 0.1 requires
an infinitely long binary fraction)

1.2 in a 32-bit binary float is actually:
1.2000000476837158203125

and this squared is:
1.440000057220458984375

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 8

Why Not Just Round ?
Rounding hides but does not help

obscures the slight inaccuracies
errors accumulate [double rounding]

99

0.0090.009
0.0899999960.09
0.90.9

Java float (binary)Decimal

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 9

Where It Costs Real Money…
Add 5% sales tax to a $ 0.70 telephone
call, rounded to the nearest cent

1.05 x 0.70 using binary double is exactly
0.73499999999999998667732370449812151491641998291015625

(should have been 0.735)

rounds to $ 0.73, instead of $ 0.74

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 10

Hence…
Binary floating-point cannot be used for
commercial or human-centric applications

cannot meet legal and financial requirements

Decimal data and arithmetic are pervasive

55% of numeric data in databases are
decimal (and a further 43% integers)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 11

Why Floating-point Decimal?
Traditional integer arithmetic with ‘manual’
scaling is awkward and error-prone

Floating-point is increasingly necessary
interest calculated daily
telephone calls priced by the second
taxes more finely specified
financial analysis, etc.

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 12

So now we know what to do…
but…

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 13

... but it’s very, very slow …

90x – 200x quantize

260x – 290xdivide

40x – 190xmultiply

210x – 560xadd

software penalty

penalty = Java BigDecimal cycles ÷ DFPU clock cycles

For example, typical Java BigDecimal add is
1,708 cycles, hardware might take 8 cycles

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 14

Effect on Real Applications
The ‘telco’ billing application
1,000,000 calls (two minutes)
read from file, priced, taxed,
and printed

93.2%72 – 78%
% execution
time in decimal
operations

Java
BigDecimal

C, C#
packages

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 15

Effect on Real Applications [2]

A “ Web Warehouse” benchmark uses float
binary for currency and tax calculations

We added realistic decimal processing…

3,862float binary

1,193decimal

orders per
second 69% of

workload
is decimal
arithmetic

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 16

Hardware is on the way…
A 2 x to 10 x performance improvement
in applications makes hardware support
very attractive

IBM is building Decimal Floating-Point
(DFP) hardware into future processors

Critical precondition was IEEE 754
Standardization ― fortunately under
revision (754r) since 2001

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 17

IEEE 754 Agreed Draft
Now has decimal floating-point formats
and arithmetic

suitable for mathematical applications, too

Fixed-point and integer arithmetic are
subsets (no normalization)

Compression maximizes precision and
exponent range of formats

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 18

IEEE 754r Formats

-6143 to +614434128

-383 to +3841664

-95 to +96732

exponent rangedigitssize (bits)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 19

The Java BigDecimal Class

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 20

java.math.BigDecimal
In Java since 1.1 (JDBC)

BigInteger and int scale

Arbitrary precision
BigDecimal z = x.multiply(y);
// 1.2 x 1.2 1.44

Eight rounding modes

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 21

Constructors
BigDecimal(String)

BigDecimal(double)
exact conversion

BigDecimal(BigInteger [, int])

valueOf(long [, int])

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 22

Arithmetic
add, subtract, multiply

divide (with given rounding and scale)

abs, negate

compareTo, min, max
(and equals, hashcode)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 23

Miscellaneous
signum (returns sign)

scale, unscaledValue

setScale (with rounding) = IEEE quantize
BigDecimal a=new BigDecimal(“0.735”);
setScale(a, 2, ROUND_HALF_EVEN);

0.74

movePointLeft, movePointRight

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 24

Conversions
toString, toBigInteger

intValue, longValue (byteValue and
shortValue inherited)

these quietly decapitate !

floatValue, doubleValue

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 25

BigDecimal 1.1 Problems
No rounding control; results get longer and
longer (and slower)

Dangerous when converting, no exponential

Important methods missing (remainder,
pow, round, etc.)

Hard to use and not intuitive (esp. divide)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 26

BigDecimal 5.0 Solution
Core concept:
Arithmetic operations depend on

numbers (many instances)
the context in which operations are effected

This is mirrored by the implementation:
enhanced BigDecimal for the numbers; allows
both positive and negative scale (e.g., 1.3E+9)
new MathContext for the context

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 27

java.math.MathContext
Immutable context object

Allows future extensions

Two properties:
precision (where to round)
rounding mode

new mathContext(7, RoundingMode.HALF_EVEN)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 28

Using MathContext
BigDecimal A = new BigDecimal(“2”);

BigDecimal B = new BigDecimal(“3”);

MathContext mc = new MathContext(7,
RoundingMode.HALF_EVEN);

BigDecimal C = A.divide(B, mc);

C has the value 0.6666667

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 29

java.math.RoundingMode
Immutable enumeration, with constants:

UP, DOWN, CEILING, FLOOR,
HALF_UP, HALF_DOWN, HALF_EVEN,
UNNECESSARY

equals, hashcode, toString, valueOf(String)

Old rounding mode int constants are still in
BigDecimal

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 30

New Constructors
BigDecimal(int), BigDecimal(long)

BigDecimal(char[]) … and sub-array

All old and new constructors may take a
MathContext, for rounding on construction

New valueOf(double) … rounds as Double

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 31

New Arithmetic
New methods: simpler divide, remainder,
divideToIntegralValue, divideAndRemainder,
pow, plus, round

All arithmetic methods may take a
MathContext

setScale may now take a RoundingMode

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 32

Miscellaneous
New methods:

precision
ulp (unit in last place)
scaleByPowerOf10(int)
stripTrailingZeros

Useful constants
ZERO
ONE
TEN

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 33

New Conversions
String/char constructors accept E+n etc.

toEngineeringString for exponent is multiple
of 3 (12.3E+6 rather than 1.23E+7), and
new toCharArray for efficiency

Exact, safe, integer conversions:
toBigIntegerExact, intValueExact,
longValueExact, shortValueExact,
byteValueExact

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 34

Performance
The internal representation (binary
BigInteger) is inherently slow for
conversions and rounding (base change)

However, the class will be able to take
advantage of hardware DFP without
recompilation

Especially if use right-size MathContext

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 35

Preferred MathContexts
The MathContext class provides contexts
which match the IEEE 754r sizes and
default rounding (HALF_EVEN):

DECIMAL32 (7 digits)
DECIMAL64 (16 digits)
DECIMAL128 (34 digits)

(Also UNLIMITED, to match old behavior)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 36

Taking Advantage of Hardware
BigDecimal
objects are
expensive

ref

precision

scale

BigDecimal
lookaside 4

lookaside 3

lookaside 2

lookaside 5

ref

lookaside 6

lookaside 1

BigInteger

.. int 2 ..
int 1

char []

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 37

Taking Advantage of Hardware
BigDecimal with
hardware lookaside
(managed by the JIT
compiler)

BigInteger only
created when
number is too large
for hardware (rare)

(ref)

Hardware
lookaside
storage

precision

scale

BigDecimal

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 38

Summary
Major enhancements to the BigDecimal
class make it much more useful and easier
to use

New MathContext and RoundingMode
classes give better control of arithmetic

Hardware on the way will dramatically
improve performance

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 39

Questions?

Google: decimal arithmetic

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 40

How Computers Compute
Binary arithmetic will continue to be used,
but, perhaps …

“in the relatively distant future, the continuing
decline in the cost of processors and of memory
will result (in applications intended for human
interaction) in the displacement of substantially
all binary floating-point arithmetic by decimal”

Professor W. Kahan, UCB

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 41

IEEE 754r Format Details

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 42

Common ‘shape’ for All
Formats

Sign and combination field fit in first byte
combination field (5 bits) combines 2 bits of
the exponent (0−2), first digit of the
coefficient (0−9), and the two special values
allows ‘bulk initialization’ to zero, NaNs, and
± Infinity by byte replication

CoefficientExponentComb. fieldSign

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 43

Exponent continuation

-6143 to +614461762+12128-bit

-383 to +3843982+864-bit

-95 to +961012+632-bit

normal rangebiasexponent
bitsFormat

(All ranges larger than binary in same format.)

CoefficientExponentComb. fieldSign

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, IBM Corporation

Mike Cowlishaw — Using Java 5.0 BigDecimal Page 44

Coefficient continuation
CoefficientExponentComb. fieldSign

Densely Packed Decimal – 3 digits in each
group of 10 bits (6, 15, or 33 in all)

Derived from Chen-Ho encoding, which
uses a Huffman code to allow expansion
or compression in 2–3 gate delays

