
Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 1

Best Practices for
Developing Components for
Shared Services
Hari Rajagopal
Galileo International

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 2

Agenda
� Definitions
� Background
� Best practices
¾Service granularity
¾Service composition
¾Service presentation
¾Common Business vocabulary
¾Automation of process

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 3

What This Is…
� A set of principles that allows efficient

construction of services that may be
deployed within a Service Oriented
Enterprise

� Applicable to web services, services under a
SOA and enterprise services that are
standalone

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 4

Some definitions
� Component

� Service

� Process

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 5

Component
� Reusable unit of code created in a silo’d

environment

� Typically a POJO (plain old Java object) but
well packaged and documented

� Deals with the basic business objects

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 6

What Is a Service?
� A unit of software that is

¾Reusable
¾Confirms to a well defined interface
¾Is complete in itself

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 7

Classic View of a Service
� Provided by a ‘provider’

� Exposed via a ‘directory’

� Looked up and located by a ‘consumer’

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 8

View of a Service

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 9

Service Categories
� Component services
¾Finer grained, atomic
¾Do not depend on others
¾Typically not directly accessed by external client

� Composite services
¾Built using component services

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 10

Process
� A business process is a collection of

related structural activities that produce a
specific outcome for a particular customer

� A business process can be part of a larger,
encompassing process and can include other
business processes that have to be included
in its method

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 11

Hierarchy
� Components aggregate and wrap classes

� Services do the same for components

� Processes compose workflows using services

How do all these relate to SOA?

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 12

Service Oriented Architecture

Implications for service design

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 13

Service Oriented Architecture
� SOA is a pattern that allows construction of

applications by composing them using
loosely coupled independent services
� It is a flexible and resilient pattern that

accommodates change by allowing a system
to be reconfigurable at the assembly level,
rather than by using code

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 14

SOA – Goals
� Move components out from silos within an

enterprise to be more generically accessible

� Moves focus from integration efforts to
process workflow definition
� Loosely couple the services deployed so that

change is easier to accommodate
� Do this in a standards based environment

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 15

Phased Approach to Adoption
� Big bang is rarely (if ever) an option

� Pick a small application that has a good
chance of success

� Reuse legacy assets rather than doing it
from scratch
¾Use service adapters, façades to wrap them

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 16

Design Time Issues to Consider
� Do not overlook issues such as:
¾Billing
¾Security
¾Logging
¾Auditing
¾SLA management

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 17

Billing Issues
� Most services are for profit

� How do you track who owes how much ?
¾Keep track of service call chain
¾Persist this to a repository
¾Ideally this is done in an async fashion

• Push it to a billing queue in a fire and forget fashion

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 18

Security
� A presentation by itself, basically security

can be done at the:
� Transport layer
¾HTTP header

� SOAP layer
¾SOAP header element

� Payload (in-band)
¾Attribute in the message body

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 19

Service Level Agreements
� Sooner or later someone is going to dispute

a bill or payment
� Proof is needed
¾Make sure there is enough data persisted so that

audits can verify it

� Runtime correction – dynamic load balancing
of services

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 20

SOA Best Practices
� Use service Façade pattern

� Use a common data model

� Use a multi-grained interface to maximize
reuse

Create focused interfaces

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 21

Payload Format
� By and large, the web services seen so far

have been an ad-hoc mix of SOAP encoding
and document literal
� Tooling is driving the standards toward doc-

literal payloads
� Doc literal format has the advantage of

inherent scalability
• Marshalling/unmarshalling step is skipped until

needed

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 22

Service Design

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 23

What Makes a Service Reusable?
� Easy to use (well defined interface)
¾Few operations
¾Meaningful parameter (Doc literal)

� Easy to maintain and version
¾Documentation (tools)
¾Consistent schema definitions

� Correct level of granularity

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 24

What Makes a Service Reusable?
(Continued)

� Design to an interface
¾Build a model
¾Generate schemas
¾Derive and compose request/response types

based on the model

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 25

Well Defined Interface
� Typically a single service addresses a specific

business need

� If you see the operations within a service
grow – question yourself whether they are
really necessary there

� Keep them stateless (easier to compose)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 26

Well Defined Interface (Continued)

� Make the service accept multiple input
formats and increase its reuse

¾Does not mean the interface is different, simply
means the service can be deployed within
different contexts (object 2 object in a JVM and
XML-XML across JVMs)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 27

What NOT to Expose as a
Service?

� Infrastructure APIs

¾Rather than build a transcoding layer – use the
far more efficient transforms that an ESB
provides

¾Rather than roll your own SAML token service,
wrap an existing API

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 28

Interface Design
� Interface design should be driven by

business needs
� If a business need is not met the service has

little if any reuse potential
� For example: In the travel industry, writing

a web service to return a cryptic dataset
from a mainframe GDS (Global Distribution
System) has no relevance to a web site
based travel aggregator

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 29

Interface Design (Continued)

� Instead a ‘HotelShopper’ service with an
interface that takes the destination, duration
of stay and price range and returns a list of
properties with pictures attached is VERY
useful.

� http://www.orbitz.com
� http://www.octopustravel.com

http://www.orbitz.com
http://www.octopustravel.com

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 30

What Does an Interface Mean?
� In the world of SOA an interface is usually

rendered (I use this term deliberately) as a
network accessible WSDL document
� The WSDL (Web Services Description

Language) document describes the interface
and its allowed operations – down to the
data type of the input(s) and output(s)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 31

Granularity
� The level of detail that an interface presents

determines the reuse
¾An interface that is very fine grained is more

usable within the enterprise at the app level
¾An interface that is coarse grained has more

business tier applicability for clients

� There are always exceptions – go multi
grained in that case

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 32

Favor Composition over
Inheritance

� Use inheritance ONLY where necessary

� Design services so that they are easily used
in process flow engines (BPEL)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 33

Using Our Travel Domain Case
� Usually a travel website deals with a GDS on

the level of availabilities, bookings and
cancellations
� Interfaces are coarse grained and resemble

the one shown:
� <PlanTrip name=“joe” startDt=“20040812”

endDt=“20040815” DEP=“LAX” DEST=“DEN”/>
[abbreviated for clarity ☺]

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 34

Using Our Travel Domain Case
(Continued)

� The example on the prior slide is actually a
façade that uses a number of finer grained
services
� The output from each of these services is

sliced and diced to return the end result that
the client of the ‘trip planner’ service expects

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 35

Sometimes …
� However, on occasion – when a client

requests that an additional person be added
to his tour then a search by the PNR
(Passenger Name Record) needs to be done
to retrieve the trip
� This is a very host specific call that

represents a fine grained case

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 36

Fine Grained Call

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 37

Multi-grained Approach ?
� In order to maximize reuse potential, use

the multi-grained approach.
¾Expose both fine grained as well as coarse

grained interfaces
¾If you cannot – err on the side of excess, rather

than increase the number of network hops

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 38

In General Though ...

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 39

Effect on Performance
� In the case of very coarse grained interfaces

overall network time is reduced (chunks of
data returned in a single call)
� However, often a large server side collation

of data may prove to be expensive as well
� (leave XML processing to the client?)

� The answer: choose wisely depending on
the circumstance (intranet roundtrip vs. web
times)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 40

Service Façade Pattern
� Coarse grained access to finer grained

atomic services
� Less network time
� Handles the process flow

� This can be accomplished in 2 ways

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 41

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 42

Service Façade Implementations
� In Java code
¾Basically build your own process flow
¾Unless you create a generic rules-engine, it’s a

task per application

� Use a standards based Business Process
engine to choreograph the flow

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 43

� Take the example of a data access
service(DAS)
¾Obviously SQL via SOAP is NOT the answer
¾Neither is allowing access to CRUD

� What then is the level of access ?
¾Façade the lower level CRUD with process based

services (clients don’t do DB access)

Service Façade Implementations
(Continued)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 44

Allow for Long Running Processes
� Design services such that a result is not

black or white
� Accommodate partial results
� ACID principles do not always apply in the

case of web services
� WS- transaction has options
¾Relaxing one or more stringencies
¾Take this into account when designing messages

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 45

Allow for Long Running Processes
(Continued)

<results>
<serviceResults>

<serviceResult/>
<error/>
<serviceResult/>
<error/>

……….
………

</serviceResults>
<error/>

</results>

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 46

Handlers
� Split your information between the

application payload and the out-of-band data

� Example:
¾Information such as credentials, TP context need

not become intermingled with the business data

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 47

Handlers (Continued)

<soap:env>
<soap:header xmlns:ns1=“mynamespace”>

<ns1:tp_info context=“45ff”/>
<ns1:myCreds uid=“kdjkdj” pwd=“#$#$”/>
</soap:header>

<soap:body>
….
…
</soap:body>

</soap:env>

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 48

Is There a Magic Mantra ?
� Design your domain model
� Derive your business objects from the

business model artifacts
� Compose granular components and services

using these fine-grained business objects
� Compose coarser grained services using a

mix of these components and services

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 49

The Model Driven Approach
� Design your domain model using a language

neutral format such as UML

� Use tools that allow easy movement
between logical model and physical artifact

[generate XML schemas from the UML diagrams]

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 50

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 51

Model to Implementation
� Using tools such as PowerDesigner, we can

generate the business model as a set of XML
schemas

� Following best practices for using
namespaces in these schema documents, we
get a set of schemas that represent the
business domain model

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 52

Sample Schema
<schema>
<import namespace=“personNs”

schemaLocation=“./person.xsd”/>
<complexType name=“traveller”>

<complexContent>
<extension base=“person”/>
</complexContent>

</complexType>

</schema>

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 53

Compose a Higher Level
Schema

<schema>
<import namespace=“ns1”

schemaLocation=“traveller”/>
<import namespace=“ns2”

schemaLocation=“address”/>
<complexType name=“profile”>

<element ref=“ns1:traveller”/>
<element ref=“ns2:address”/>

</complexType>

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 54

And Use That in Your Request
<schema>

<import namespace=“n1”
schemaLocation=“profile.xsd”/>

<import namespace=“n2”
schemaLocation=“preferences.xsd”/>

<complexType name=“AirlineRequest”>
<element ref=“n1:profile”/>
<element ref=“n2:preferences”/>

</complexType>

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 55

Putting It All Together
<definitions>

<types>
<element name=“req” type=“AirlineRequest”/>
<element name=“resp”
type=“AirlineResponse”/>

</types>
….
<message name=“xmlIn” part=“req”
</message>

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 56

Namespaces for Schemas
� Remember to qualify namespaces

� As we move to more and more services
there needs to be a way to uniquely identify
the language
¾i.e. – make sure namespaces distinguish intent

� RDF may be one way

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 57

Advantages
� When a business object changes, the client

automatically picks up the change by a
refresh of the WSDL

� The server side objects and client code are
kept in sync with minimal effort

� As long as the interfaces are invariant, there
is no ripple effect

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 58

Importance of WSDL Doc
� Almost every tool on the market uses them

� Make sure the WSDL accurately reflects the
message content
¾Tools such as .NET VStudio won’t be able to use

it otherwise (interoperability is a concern)
¾Namespaces are a concern as well (standards

differ between how .NET and AXIS handle them)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 59

Loosely Coupled Interfaces
� Only two things need be known for a client

to use a service:

¾Endpoint URL (available from the WSDL)

¾Input and output message types (-ditto-)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 60

While on the Server Side …
� The service APIs and the business schemas

are processed using an XML binding tool
such as CASTOR or JAXB
� A common business domain model jar is

then created and used throughout the
domain
� All these changes are done at compile time

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 61

Business Process Integration
� Done using tools that allow workflow design
� Visually compose the flow and inspect the

generated WSDL

� A process is itself a ‘Service’ – hence the
meta-service paradigm still holds
� Standards compliant BP Managers are the

way to go

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 62

Business Process Managers
� Run on app servers (Tomcat)

� Typically expose the process as yet another
web service that can be invoked by a client

� Have tools that integrate with IDEs such as
WSAD and eclipse (generate XML)

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 63

Design Your Process
<definitions name="EmpService" ...

xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

...
<portType name="EmpInterface">

<operation name="getEmpSalary">
<input message="tns:EmpInterface_getEmpSalary"/>
<output message="tns:EmpInterface_getEmpSalaryResponse"/>

</operation>
</portType>
...

<plnk:partnerLinkType name="EmpServiceLink">
<plnk:role name="EmpServiceProvider">
<plnk:portType name="tns:EmpInterface"/>

</plnk:role>
</plnk:partnerLinkType>
</definitions>

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 64

Instrument Your Services
� SOA framework should have this at all

touchpoints

� This provides out of the box monitoring
information

� In addition provide hooks for service writers
to implement custom monitoring

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 65

Example
� Client calls a service
¾The SOA framework logs transit times between a

WS Gateway and Broker
¾When a service makes a network hop to another

remote node, the transit time there is logged by
that instance of the broker

¾How is transit time spent in a legacy or 3rd party
service available?
• Case for use of the custom hooks

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 66

Location and Interface Neutral
Code

� Get URLs from JNDI, nothing is hardcoded

� Interface ubiquity – all the services on all
nodes are accessed using identical interfaces
¾The payload determines the processing

� Relocate responsibilities for infrastructure
tasks (security, logging, monitoring) to the
framework

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 67

Don’t Reinvent the Wheel
� Use off the shelf component (within

budgetary constraints)

� Rewriting transport adapters and XSLT
transforms for every new project is a waste

Colorado Software Summit: October 24 – 29, 2004 © Copyright 2004, Galileo International

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 68

Contact Info
� Grimgaunt@yahoo.com
� Hari.rajagopal@galileo.com

mailto:Grimgaunt@yahoo.com
mailto:Hari.rajagopal@galileo.com

