lorado Software S

Best Practices for
Developing Components for
Shared Services

Hari Rajagopal
Galileo International

ColoradoAm

Software Summit

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Agenda

= Definitions
= Background

= Best practices
»Service granularity
» Service composition
»Service presentation
»Common Business vocabulary
»Automation of process

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 2

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i What This Is...

= A set of principles that allows efficient
construction of services that may be
deployed within a Service Oriented
Enterprise

= Applicable to web services, services under a
SOA and enterprise services that are
standalone

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 3

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Some definitions

= Component
= Service

= Process

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 4

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Component

= Reusable unit of code created in a silo’d
environment

= Typically a POJO (plain old Java object) but
well packaged and documented

= Deals with the basic business objects

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 5

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i What Is a Service?

= A unit of software that is

> Reusable
» Confirms to a well defined interface
»Is complete in itself

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 6

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Classic View of a Service

= Provided by a ‘provider’
= Exposed via a ‘directory’

= Looked up and located by a ‘consumer’

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 7

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i View of a Service

@—,\v} invoke > {’;} recelve -
I,r’_ Ly
@ reply -

{fﬂﬂﬂEUMHﬁP

(‘D find service
“

e

T

Service Lookup
<<directory>>

Te—

'__ <<provider>> 5y

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 8

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Service Categories

= Component services
»Finer grained, atomic
» Do not depend on others
»Typically not directly accessed by external client

= Composite services
»Built using component services

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 9

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Process

= A business process is a collection of
related structural activities that produce a
specific outcome for a particular customer

= A business process can be part of a larger,
encompassing process and can include other
business processes that have to be included
in its method

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 10

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Hierarchy

= Components aggregate and wrap classes

= Services do the same for components
= Processes compose workflows using services

How do all these relate to SOA?

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 11

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

!'_ Service Oriented Architecture

Implications for service design

ColoradoA—m

Software Summit

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 12

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo Internationa

i Service Oriented Architecture

= SOA is a pattern that allows construction of
applications by composing them using
loosely coupled independent services

= It is a flexible and resilient pattern that
accommodates change by allowing a system
to be reconfigurable at the assembly level,
rather than by using code

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 13

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i SOA — Goals

= Move components out from silos within an
enterprise to be more generically accessible

= Moves focus from integration efforts to
process workflow definition

= Loosely couple the services deployed so that
change is easier to accommodate

= Do this in a standards based environment

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 14

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Phased Approach to Adoption

= Big bang is rarely (if ever) an option

= Pick a small application that has a good
chance of success

= Reuse legacy assets rather than doing it
from scratch

»Use service adapters, facades to wrap them

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 15

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Design Time Issues to Consider

= Do not overlook issues such as:
> Billing
»Security
»Logging
»Auditing
»SLA management

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 16

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Billing Issues

= Most services are for profit

= How do you track who owes how much ?
»Keep track of service call chain
> Persist this to a repository

»Ideally this is done in an async fashion
Push it to a billing queue in a fire and forget fashion

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 17

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Security

= A presentation by itself, basically security
can be done at the:

= Transport layer
»HTTP header

= SOAP layer
»SOAP header element

= Payload (in-band)
» Attribute in the message body

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 18

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Service Level Agreements

= Sooner or later someone is going to dispute
a bill or payment

= Proof is needed

»Make sure there is enough data persisted so that
audits can verify it

= Runtime correction — dynamic load balancing
of services

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 19

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i SOA Best Practices

= Use service Facade pattern

= Use a common data model

= Use a multi-grained interface to maximize
Freuse
Create focused interfaces

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 20

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Payload Format

= By and large, the web services seen so far
have been an ad-hoc mix of SOAP encoding
and document literal

= Tooling is driving the standards toward doc-
literal payloads

= Doc literal format has the advantage of
inherent scalability

Marshalling/unmarshalling step is skipped until
needed

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 21

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

Service Design

ColoradoAm

Software Summit

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 22

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i What Makes a Service Reusable?

= Easy to use (well defined interface)
»Few operations
»Meaningful parameter (Doc literal)

= Easy to maintain and version
»Documentation (tools)
» Consistent schema definitions

= Correct level of granularity

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 23

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

(Continued)

i What Makes a Service Reusable?

= Design to an interface
> Build a model
» Generate schemas

»Derive and compose request/response types
based on the model

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 24

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Well Defined Interface

= Typically a single service addresses a specific
business need

= If you see the operations within a service
grow — question yourself whether they are
really necessary there

= Keep them stateless (easier to compose)

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 25

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Well Defined Interface (continvea)

= Make the service accept multiple input
formats and increase its reuse

»Does not mean the interface is different, simply
means the service can be deployed within
different contexts (object 2 object in a JVM and
XML-XML across JVMs)

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 26

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

What NOT to Expose as a
Service?

» Infrastructure APIs

»Rather than build a transcoding layer — use the
far more efficient transforms that an ESB
provides

»Rather than roll your own SAML token service,
wrap an existing API

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 27

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Interface Design

= Interface design should be driven by
business needs

= If a business need is not met the service has
little if any reuse potential

= For example: In the travel industry, writing
a web service to return a cryptic dataset
from a mainframe GDS (Global Distribution
System) has no relevance to a web site
based travel aggregator

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 28

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Interface Design (continuea)

= Instead a ‘HotelShopper’ service with an
interface that takes the destination, duration
of stay and price range and returns a list of
properties with pictures attached is VERY
useful.

= http://www.orbitz.com
= http://www.octopustravel.com

Hari Rajagopal — Best Practices for Developing Components for Shared Services

Page 29

http://www.orbitz.com
http://www.octopustravel.com

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo Internationa

i What Does an Interface Mean?

= In the world of SOA an interface is usually
rendered (I use this term deliberately) as a
network accessible WSDL document

= The WSDL (Web Services Description
Language) document describes the interface
and its allowed operations — down to the
data type of the input(s) and output(s)

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 30

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Granularity

= The level of detail that an interface presents
determines the reuse

»An interface that is very fine grained is more
usable within the enterprise at the app level

»An interface that is coarse grained has more
business tier applicability for clients

= There are always exceptions — go multi
grained in that case

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 31

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

Favor Composition over
Inheritance

= Use inheritance ONLY where necessary

= Design services so that they are easily used
in process flow engines (BPEL)

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 32

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Using Our Travel Domain Case

= Usually a travel website deals with a GDS on
the level of availabilities, bookings and
cancellations

= Interfaces are coarse grained and resemble
the one shown:

= <PlanTrip name="joe" startDt="20040812"
endDt="20040815" DEP="LAX" DEST="DEN"/>
[abbreviated for clarity ©]

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 33

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

(Continued)

i Using Our Travel Domain Case

= The example on the prior slide is actually a
facade that uses a number of finer grained
services

= The output from each of these services is
sliced and diced to return the end result that
the client of the ‘trip planner’ service expects

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 34

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Sometimes ...

= However, on occasion — when a client
requests that an additional person be added
to his tour then a search by the PNR
(Passenger Name Record) needs to be done

to retrieve the trip

= This is a very host specific call that
represents a fine grained case

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 35

Colorado Software Summit: October 24 — 29, 2004

© Copyright 2004, Galileo International

i Fine Grained Call

HotelDiescription

Lervice

getHotelDescription({propertyI)

Hari Rajagopal — Best Practices for Developing Components for Shared Services

Page 36

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Multi-grained Approach ?

= In order to maximize reuse potential, use
the multi-grained approach.

»Expose both fine grained as well as coarse
grained interfaces

»If you cannot — err on the side of excess, rather
than increase the number of network hops

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 37

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i In General Though ...

Less Business Yalue More Business Value
- -
Objects Components Services
~i L
Fine-Grained Coarse-Grained

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 38

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Effect on Performance

= In the case of very coarse grained interfaces
overall network time is reduced (chunks of
data returned in a single call)

= However, often a large server side collation
of data may prove to be expensive as well

= (leave XML processing to the client?)

= The answer: choose wisely depending on
the circumstance (intranet roundtrip vs. web
times)

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 39

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Service Facade Pattern

= Coarse grained access to finer grained
atomic services

= Less network time
= Handles the process flow

= This can be accomplished in 2 ways

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 40

Colorado Software Summit: October 24 — 29, 2004

© Copyright 2004, Galileo International

client Hotel=earch Hotellocation=earchService
‘alClass ‘SemiceFacade ‘aClass
getHotel (destination) FL
[Fate, location]
i etHaotelsinArea _._
- -
[lat, long]

Hari Rajagopal — Best Practices for Developing Components for Shared Services

_ getHotelHates

HotelRateSearchService

;aClass

[maxrate]

Page 41

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Service Facade Implementations

= In Java code
»Basically build your own process flow

»Unless you create a generic rules-engine, it's a
task per application

» Use a standards based Business Process
engine to choreograph the flow

Hari Rajagopal — Best Practices for Developing Components for Shared Services

Page 42

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Service Facade Implementations

(Continued)

= Take the example of a data access
service(DAS)

»Obviously SQL via SOAP is NOT the answer
»Neither is allowing access to CRUD

= \What then is the level of access ?

»Facade the lower level CRUD with process based
services (clients don‘t do DB access)

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 43

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Allow for Long Running Processes

= Design services such that a result is not
black or white

= Accommodate partial results

= ACID principles do not always apply in the
case of web services

= WS- transaction has options
»Relaxing one or more stringencies
»Take this into account when designing messages

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 44

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

Allow for Long Running Processes
(Continued)

<results>
<serviceResults>
<serviceResult/>
<error/>
<serviceResult/>
<error/>

< /serviceResults>
<error/>

< /results>

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 45

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Handlers

= Split your information between the
application payload and the out-of-band data

= Example:

» Information such as credentials, TP context need
not become intermingled with the business data

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 46

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Handlers (continveq)

<sOoap:env>
<soap:header xmlns:ns1="mynamespace”>

</soap:header>

<soap:body>

</soap:body>
</soap:env>

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 47

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Is There a Magic Mantra ?

= Design your domain model

= Derive your business objects from the
business model artifacts

= Compose granular components and services
using these fine-grained business objects

= Compose coarser grained services using a
miXx of these components and services

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 48

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i The Model Driven Approach

= Design your domain model using a language
neutral format such as UML

= Use tools that allow easy movement
between logical model and physical artifact

[generate XML schemas from the UML diagrams]

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 49

Colorado Software Summit: October 24 — 29, 2004

© Copyright 2004, Galileo International

Z<intedface= =
Person

<=Interface=>
Property

Traveller

Agent

N

Hotel

Address

Hari Rajagopal — Best Practices for Developing Components for Shared Services

Page 50

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Model to Implementation

= Using tools such as PowerDesigner, we can
generate the business model as a set of XML
schemas

= Following best practices for using
namespaces in these schema documents, we
get a set of schemas that represent the
business domain model

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 51

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Sample Schema

<schema>

<import namespace="personNs”
schemalocation="./person.xsd"/>
<complexType name="traveller”>
<complexContent>

<extension base="person"/>
</complexContent>

</complexType>
</schema>

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 52

Colorado Software Summit: October 24 — 29, 2004

Compose a Higher Level
Schema

© Copyright 2004, Galileo International

<schema>

<import namespace="ns1"
schemalocation="traveller”/>

<import hamespace="ns2"
schemalocation="address"/>

<complexType name="profile">
<element ref="ns1:traveller”/>
<element ref="ns2:address"/>
<fcomplexType>

Hari Rajagopal — Best Practices for Developing Components for Shared Services

Page 53

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i And Use That in Your Request

<schema>

<import namespace="n1"
schemalocation="profile.xsd"/>

<import namespace="n2"
schemalocation="preferences.xsd"/>

<complexType name="AirlineRequest”>
<element ref="n1:profile”/>
<element ref="n2:preferences”/>

</complexType>

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 54

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

s Putting It All Together

<definitions>
<types>
<element name="req"” type="AirlineRequest”/>
<element name="resp”
type="AirlineResponse”/>

</types>

<message name="xmlIn” part="req”
</message>

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 55

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Namespaces for Schemas

= Remember to qualify nhamespaces

= As we move to more and more services

there needs to be a way to uniquely identify
the language

> [.e. — make sure namespaces distinguish intent

= RDF may be one way

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 56

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Advantages

= \When a business object changes, the client
automatically picks up the change by a
refresh of the WSDL

= The server side objects and client code are
kept in sync with minimal effort

= As long as the interfaces are invariant, there
isno-ripple effect

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 57

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Importance of WSDL Doc

= Almost every tool on the market uses them

= Make sure the WSDL accurately reflects the
message content

»Tools such as .NET VStudio won't be able to use
it otherwise (interoperability is a concern)

»Namespaces are a concern as well (standards
differ between how .NET and AXIS handle them)

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 58

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Loosely Coupled Interfaces

= Only two things need be known for a client
to use a service:

»Endpoint URL (available from the WSDL)

»Input and output message types (-ditto-)

Hari Rajagopal — Best Practices for Developing Components for Shared Services

Page 59

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i While on the Server Side ...

= The service APIs and the business schemas
are processed using an XML binding tool
such as CASTOR or JAXB

= A common business domain model jar is
then created and used throughout the
domain

= All these changes are done at compile time

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 60

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo Internationa

i Business Process Integration

= Done using tools that allow workflow design

= Visually compose the flow and inspect the
generated WSDL

= A process is itself a ‘Service’ — hence the
meta-service paradigm still holds

= Standards compliant BP Managers are the
way to go

Hari Rajagopal — Best Practices for Developing Components for Shared Services

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo Internationa

i Business Process Managers

= Run on app servers (Tomcat)

= Typically expose the process as yet another
web service that can be invoked by a client

= Have tools that integrate with IDEs such as
WSAD and eclipse (generate XML)

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 62

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Design Your Process

<definitions name="EmpService" ...
xmlIns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<portType name="Emplnterface">

<operation name="getEmpSalary">

<input message="tns:Emplnterface_getEmpSalary"/>

<output message="tns:Emplnterface_getEmpSalaryResponse"/>
</operation>

</portType>

<plnk:partnerLinkType name="EmpServiceLink">
<plnk:role name="EmpServiceProvider">
<plnk:portType name="tns:Emplnterface"/>
</plnk:role>

</plnk:partnerLinkType>
</definitions>

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 63

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Instrument Your Services

= SOA framework should have this at all
touchpoints

= This provides out of the box monitoring
information

= In addition provide hooks for service writers
to implement custom monitoring

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 64

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Example

= Client calls a service

»The SOA framework logs transit times between a
WS Gateway and Broker

»When a service makes a network hop to another
remote node, the transit time there is logged by
that instance of the broker

»>How is transit time spent in a legacy or 3 party
service available?
Case for use of the custom hooks

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 65

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

Location and Interface Neutral
i Code

= Get URLs from JNDI, nothing is hardcoded

= Interface ubiquity — all the services on all
nodes are accessed using identical interfaces

»The payload determines the processing

= Relocate responsibilities for infrastructure

tasks (security, logging, monitoring) to the
framework

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 66

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Don’t Reinvent the Wheel

= Use off the shelf component (within
budgetary constraints)

= Rewriting transport adapters and XSLT
transforms for every new project is a waste

Hari Rajagopal — Best Practices for Developing Components for Shared Services

Page 67

Colorado Software Summit: October 24 — 29, 2004 © Copyright 2004, Galileo International

i Contact Info

= Grimgaunt@yahoo.com
= Hari.rajagopal@galileo.com

Hari Rajagopal — Best Practices for Developing Components for Shared Services Page 68

mailto:Grimgaunt@yahoo.com
mailto:Hari.rajagopal@galileo.com

