Introduction to Service Oriented Architecture (SOA)

Hari Rajagopal
Galileo International
Agenda

- Definitions
- Background
- SOA principles
- Case study
- Summary
Component

- Reusable unit of code, typically developed for a specific project or app that has been packaged in a way that it can be reused

- Typically a POJO (plain old Java object)

- Deals with the basic business objects
What Is a Service?

- More generic than a ‘web service’!
 - Although that is how the majority are deployed

- A well defined unit of software that
 - Performs a specific function
 - Complete in itself
 - Consistent interface
Classic View of a Service

- Provided by a `provider`
- Exposed via a `directory`
- Looked up and located by a `consumer`
View of a Service

1. **find service**
2. **invoke**
3. **receive**
4. **reply**
Service Discovery...

- Has not lived up to its promise
 - XML is not 100% machine understandable
 - RDF descriptions may be the key??
 - (Paul Giangarra devotes a section of his talk to this)

- Services are still ‘handed’ to clients with documentation, API support groups handle issues
Enterprise Service Bus

- Is a standards based messaging platform that provides XML transforms, content based routing

- Can be used as the basis for implementing the transport layer of SOA

- Offerings from IBM, Fiorano, Soniq, ...
ESB Usage Patterns

- Router
- Broker
- Adapter
- Transformer
Router

- Content based
 - Typically introspects into the message and determines target endpoint
 - Configurable using XSLT expressions
 - Used for routing based on customer and/or framework cues inserted in the message stream
 - Another case for keeping the pattern of interception active within the framework
Service Oriented Architecture

- An architecture that emphasizes:
 - Coupling of existing and new architectures seamlessly
 - Moves components out of silos into the mainstream
 - Responsive and agile architecture
 - Easy to rearrange and reassemble components
Where Did It Come From?

- SOA has been around in various guises
 - Implementation has become easier due to the advent of WS-standards

- Some of these may sound familiar
 - Object Brokers (ORB)
 - RPC based brokers
 - Middleware based integration mechanisms
Is a SOA Simply Web Services?

Web Services are one possible means of implementing a SOA

In the past, client-server SOAs have been attempted
SOA Functionality

- **Base functionality of a SOA implementation:**

 - Deploy services within its domain

 - Integrate the services and make them available

 - Orchestrate the integrated services
 - In a reliable fashion
SOA Structure

- Basic unit of a SOA framework is a service

- Integration usually occurs through open systems protocols (SOAP, JMS)

- Orchestration is accomplished using BPEL4WS and the like
Service Network

- A application level network that leverages and implements a SOA

- Consists of various interacting applications that are composed of services (facilities) that are hosted within a SOA

- True enterprise integration and reuse
 - Marketing may use same service as KM for charting
Service Network Boundaries

Trading Partner Integration
Between Businesses

Application Integration
Between Applications

SODA
Within Applications

Service Network
Security Routing Transform Notify Log Combine
What Does a SOA Buy You?

- Reusable services

- Applications are composed of *services* rather than monolithic units

- Facilities provided by the SOA framework leave the developer free to code business logic
What Are the Participants?

- Servers (Web and application)
- Directories / registries
- Routers / brokers
- Enterprise Service Bus
- Transaction processing monitors
Case Study
Acronyms

- GDS – Global Distribution Service
- Service provider – in this case airlines, rental car companies, hotel chains
- Vendors – see above, except now we have aggregators in the mix as well
SOA Implementations

The classic ‘build versus buy’ dilemma
Trade-offs

- **Build**
 - Expensive
 - In-house expertise needed
 - Proprietary implementation
 - Lack of input to standards bodies

- **Buy**
 - Expensive (long term)
 - In-house expertise needed to develop against
 - Tied to vendor implementation
Open Source Offerings??
Some Travel Company

- Primary business focus is the housing and supply of travel related information
 - Air itineraries, hotel reservations, car rentals

- Question:
 - How do we provide this information to different business units?
 - How do we provide services to access this information to clients of the business units?
Solution

- 1st phase – expose traditional artifacts as SOAP based web services that are easily available to clients

- 2nd phase – house these services within a SOA framework such that they are reusable across the enterprise
Phase 1

- Put Web Service front ends on legacy assets such as GDS data
 - These are housed on ‘big-iron’ mainframes
 - Expose these via XML based APIs
 - Provide aggregated (higher level) services for the presentation tier
Flaws Revealed

- Data is still in the legacy format
- Scalability issues
- No way to bill for the transactions
- Versioning and cutover issues
Which Leads to the Following...

- What are some of the facilities provided by a SOA?

- Security
- Service lifetime management
- Reliability
- Reporting & logging
- SLA management
First Steps in Implementing SOA

- Design and develop a messaging core
- Use standard protocols to interface with external entities
- Build with the philosophy of location transparency
First Steps in Implementing SOA (Continued)

- Build an agile core that is merely a message router (much like a bus)

- In the interests of scalability and security partition the implementation between the presentation and business tier (note: the codebase running on every tier is the same, one simply ‘knows’ that it is a presentation layer box)
Architectural Layout

- **Client**
- **Gateway**
- **Broker**
- **Service(s)**

SOA framework
Building Blocks

- Apache Axis
- Fiorano ESB
- Tomcat
- DB2
SOA Provides Services Too...

- Infrastructure services are provided to developers
 - Authentication of clients using the services
 - Logging of transactions
 - Security and DOS attack prevention
 - Load based routing and balancing
Gateway Tasks

- In the previous slide, the gateway layer:
 - Receives messages
 - Verifies authenticity
 - Performs format translation (more on this later)
 - Routes to the appropriate service endpoint
Gateway Architecture

- Servlet based
- Uses filters to intercept and process messages
- Content based decision making ability
Authentication

- In this case since most clients were coming in using HTTPS and port 443 simple Basic authentication was used.
- Authentication information is carried in the HTTP headers as encrypted data (base-64).
After Basic Authentication...

- A token is carried out of band with the payload
- This ‘call-context’ also contains correlation information for reconstituting audit info
- The token is re-asserted at various points along the way
Service Broker

- The broker serves as a lookup agent
- It also initializes the services and brings them into play
 - Note: the services are dormant and waiting since the SOA framework startup (lazy init)
- Broker gets service information from the registry
Registry Information

- Service name
- Service version
- Service payload format
 - Input type
 - Output type
- Location of the service instance (URL)
Payload Formats

- Object or XML?

- XML – usable by diverse client platforms

- Object – performance gains

- XML appliances may make this a non-issue
Transcoding

- SOAP – ‘lingua franca’ is XML
- Objects work best for performance
- Solution – ‘transcode at the edge’
Long Running Transactions

- Typically web service transaction times span more resources than we are used to
- ACID conditions may not be enforceable
- Can we relax any of these?
- Which ones?
 - In some cases consistency is relaxable
 - In others – atomicity
Asynchronous Messages
Business Domain Model

- A common representation of the assets of the business
- Reusable across domains within diverse development environments
- Language neutral model to base services
- Ease of service interoperability
How Are Services Used?

- Located by name and version

- Accessed by clients that generate interfaces based on WSDL

- WSDL uses XML types that derive from the BDM
BDM Based Approach

- Develop your business model (UML)

- Generate XSD schema from the model

- Compose service interfaces from these business model schemas

- Generate language specific objects from these using binding frameworks
Routing

- Typically, gateways route to brokers within the framework
- This allows
 - Load based routing
 - Transparent routing to upgraded services
 - Handling of version inconsistencies
 - Consider the following example
Broker to Broker Call

- Client calls service A on a Service network

- Gateway authenticates the client

- Gateway determines whether the appropriate service version exists at that node

- Routes to the appropriate node in the domain
Alternate Scenario

- The version of the service requested by the client (based on attribute in the payload) is not found at this node
- Gateway:
 - Looks up service info for that domain
 - Finds an alternate
 - Applies transform as needed (object -> XML)
 - Routes to the appropriate node
Deployment Strategy

- A rack of inexpensive bladeservers
- Identical codebase on each blade
- A spare pool of blades
- Addressable under a common Virtual IP
Summary

- Build a micro-broker routing core
- Build in SLA management from the get go
- Use COTS ESBs to build the transport backbone and do your transcoding
- Common business semantics (BDM)
So, Now That It’s Built...

$1 million question is –
Will they come?
Service Level Agreements

- A Service Level Agreement (SLA) defines the minimum level of service that a client will tolerate or the business has contracted to provide

- Can make or break adoption of your services
Service Level Objectives

The SLA with a client may be composed of one or more Service Level Objectives (SLO)

These include:

- Response time
- Availability and uptime of service
- Accuracy of data returned
Example of a SLA

- United airlines contracts with a website provider that presents its fares to the public
 - A customer shall have a mean response time of 5 seconds
 - This shall be averaged over a month

- The accuracy (matching of quoted fares vs booked price) shall be within 5%
Backing Up Your Claims

How do you deliver this level of service?

- Manage your application dynamically

- Monitor it so you can prove response times, accuracy, *etc.* – in case of an audit (CYA)
Service Level Management

- Monitoring
 - Is a service level threshold exceeded?

- Management
 - Taking corrective measures to restore the level of service
Back to Our Case Study

- A COTS – AmberPoint SLM manager
- Custom code to integrate the SLM manager with the SOA framework
- End result – better uptime, faster response
SLM Approach
Business Process Control

- Now that services are built and available, how are they to be reused within the enterprise?
 - Compose ‘Meta’ services of the more granular services
 - Orchestrate these using a standard mechanism
In Our Travel Domain Case Study...

- Finer grained services would be:
 - Air availability or Flight Information lookup
 - Booking service
 - Travel codes translator
 - Credit card authorization service
 - ...

- The finer grained services are rarely used directly by web clients – exception being the TCT
Orchestration of Services

- What happens when a vendor changes, inventory is not available or a route to a GDS is unavailable on the network?
- Business rules defined in BPEL4WS automatically route the service to other resources to satisfy the request.
Meta Service

- **Trip Planner service**
 - Takes trip endpoints and returns an collated response that displays trip choices, different routes, schedules
 - Uses FLIFO to get a list of possible routes and schedules
 - Uses the travel codes translator to decode industry specific codes (DEN, LAX)
 - Uses Destination Resolution services to display value-adds for the destination (golf packages, tours)
Orchestration

- Standards have jelled recently
- BPEL4WS is a joint effort of the following companies
 - IBM
 - Microsoft
 - HP
Orchestration (Continued)

- BPEL4WS (the language) focuses on building services that are composed of other services
- The language defines a process in terms of a number of activities involving interacting partnerlinks
- BPEL process is itself a service
When Should We Use SOA?

- Use SOA principles everywhere that flexibility is desired
- ESB on the other hand is NOT a must have in all projects
 - Typically an architecture that is geographically distributed can benefit from this
 - As also – process flows that are very asynchronous
What Next?

- Grids and autonomic computing
- Service network aggregation
- Dynamic discovery and request satisfaction
- ...
- ...
- ????????????
Related Presentations

- Two other sets of presentations, by
 - Paul Giangarra
 - Paul Freemantle

- If this presentation was interesting please check those out.
References

- http://www.serviceoriented.org
My Contact Info

- Grimgaunt@yahoo.com
- Hari.rajagopal@galileo.com